Paracompactness in perfectly normal, locally connected, locally compact spaces
نویسندگان
چکیده
منابع مشابه
On the Hereditary Paracompactness of Locally Compact, Hereditarily Normal Spaces
We establish that if it is consistent that there is a supercompact cardinal, then it is consistent that every locally compact, hereditarily normal space which does not include a perfect pre-image of ω1 is hereditarily paracompact. This is the fifth in a series of papers ([LTo], [L2], [FTT], [LT], [T1] being the logically previous ones) that establish powerful topological consequences in models ...
متن کاملLocally Compact Perfectly Normal Spaces May All Be Paracompact
Using results announced by Stevo Todorcevic we establish that if it is consistent that there is a supercompact cardinal then it is consistent that every locally compact perfectly normal space is paracompact. Modulo the large cardinal, this answers a question of S. Watson. We also solve a problem raised by the second author, proving that it is consistent with ZFC that every first countable hered...
متن کاملLocally Compact, Ω1-compact Spaces
This paper is centered on an extremely general problem: Problem. Is it consistent (perhaps modulo large cardinals) that a locally compact space X must be the union of countably many ω-bounded subspaces if every closed discrete subspace of X is countable [in other words, if X is ω1-compact]? A space is ω-bounded if every countable subset has compact closure. This is a strengthening of countable ...
متن کاملLocally Compact Path Spaces
It is shown that the space X [0,1], of continuous maps [0, 1] → X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected. AMS Classification: 54C35, 54E45, 55P35, 18B30, 18D15
متن کاملOn planarity of compact, locally connected, metric spaces
Thomassen [Combinatorica 24 (2004), 699–718] proved that a 2–connected, compact, locally connected metric space is homeomorphic to a subset of the sphere if and only if it does not contain K5 or K3,3. The “thumbtack space” consisting of a disc plus an arc attaching just at the centre of the disc shows the assumption of 2–connectedness cannot be dropped. In this work, we introduce “generalized t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1980
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1980-0587957-0